
IJSRST174614 | Published :25March2018 | March-April-2018 [(4)6: 59-63]

© 2018 IJSRST | Volume 4 | Issue6 |Print ISSN: 2395-6011 | Online ISSN: 2395-602X

National Conference on Smart Computation and Technology in Conjunction with The Smart City Convergence 2018

 59

Cross Platform Application Using Electron Js
Manish Kumar Suthar*, Sandeep Tuli

Department of Computer Engineering, PIET Jaipur, Rajasthan, India

ABSTRACT

Electron is a framework for cross-platform desktop applications using Chromium and Node-Web kit. Electron

is a JavaScript framework from GitHub, to build powerful cross platform desktop applications with

HTML/JS/CSS. On top of electron, imagine applications developed with existing JavaScript ecosystem and

building desktop apps - the outcome will be amazing. It’s easy to build cross-platform apps using HTML, CSS,

and JavaScript.

Keywords: framework; app; GitHub; ecosystem; Cross platform desktop; Imagine

I. INTRODUCTION

Electron is basically a runtime server base platform

that allows you to develop desktop applications using

HTML, CSS, and JavaScript.[2] It is an open source

framework developed by GitHub. Electron is

generally called atom cell. it built for atom editor to

handle chromium to Node-Webkit event loop

integration and developed native API. Electron js

application is works with combining the chromium

content framework and NW JS node together in a

single processing framework. A variant of Node-

Webkit runtime that is focused on desktop native

application instead of web servers for different type of

operating system. So using electron js we are able to

create native desktop application. Electron js create a

dynamic process for running the dynamic build

application for native creation.

Electron really simple here by combining both

frameworks together in a single shell. It's not a

complex framework at all. You don't have to learn a

lot of conventions in order to start application

development with Electron. It's very easy to structure

an application using Electron as there is no complex

tooling required to set it up. Electron always keeps up

to date with chromium and node versions. The

chromium used inside Electron is always two weeks

behind the latest stable chromium version. It typically

includes the latest version of the node and v8 engine.

Own strengths and disadvantages will be laid down in

this paper.

II. PROBLEM STATEMENTS

A. Development of Application which is work as

“cross-platform application”?

[1]"Native" cross-platform apps: Native cross-platform

apps are created when you use APIs that are provided

by the Apple or Android SDK, but implement them in

other programming languages that aren’t supported by

the operating system vendor.

[2] Native HTML5 cross-platform apps have never

gained wide of processing network and compiling

because this approach to development results in

performance issues when an app’s UI is rich in

components.

B. Why need to development of cross-platform apps

for product owners and developers?

[1] Cost-efficient cross-platform apps are cheaper to

build and maintain due to a number of factors. If

cross-platform apps are properly developed, at least

half of their code can be used across platforms.

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

60

[2] One team and one product for two platforms: -

Product owners who want a cross-platform

application need only one team of developers that are

trained in one set of technologies.

C. How modern cross-platform apps good for the end

user?

[1] Designing Uniqueness:- Feature of cross-platform

development tools providing developers/ designers to

create the unique user experience that app users

appreciate.

[2] Best for Original: - Quicker development provides

product owners with an opportunity to collect user

feedback and to secure a patent and a spot in the

market.

[3] Greater reach and easier marketing: - cross-

platform apps are more useful for many business

owners because they provide a wider reach: by

creating one application you can use all platforms.

III. DETAILED CONTENT

A. HISTORY

Node-Webkit as a in history desktop applications

starts in 2011 with Roger Wang, the developer of

Node Webkit. Roger Wang started the node-webkit

project naming a simple Node-Webkit module that

can create a browser window using Web Kit - the

browser engine used by Safari and chromium.

Advantage of the node-webkit module is that we can

use Node-Webkit APIs inside the webpage and create

a native application which is use to renderer the

process by child process of system.it is implemented in

Node-webkit library which is show all browser data so

in history it is not appropriate model for development.

After some-time, Roger improved the node-weskit by

replacing Web Kit with the chromium embedded

framework (CEF).

B. DEVELOPMENT

 Title Development of a hello world application using

Electron:- Node-Webkit is installed or not by

cmd window and enter the command node -v //

it is use to check node version in system

 Installing Node-Webkit :-The easy way to

install Node-Webkit is using installer. Follow

the instruction www.nodejs.org to download

executable file for your operating system. There

are a couple of other ways to install Node-

Webkit.

Mac

 brew install node

Linux

In linux base system the installation of nodejs is

assential process of using terminal window so

(http://nodesource.com)

curl -sL https://deb.nodesource.com/setup_6.x | sudo -

E bash sudo apt-get install -y nodejs

 Installing Electron[1]

Electron is working by npm module so before

installation of electron module to have to install the

npm. To install npm electron use following command:

 npm install -g electron to install globally

electron you can use the command with –g with

electron: Globally process of system is include

the programming to overall system. It is just

system to include full processing system.:

Locally - local modules can be installed with the

same command, but without the -g flag. The

modules will be installed into the current

directory. Its scope is limited to the current

directory.

C. INTERNAL WORKING OF ELECTRON

Electron is based on Google's chromium project.

Electron working with chromium module that is

internally working with render process of web page.

Chromium can include modules are the core code in

C++ needed to render a web page in multi process

sandboxed browser process by multithreading.

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

61

Electron include the feature of node js, chromium and

google V8 engine. Node Js is able to facility to

development of web API and Google V8 engine is

process the web API. For better understanding let is

look into how the chrome browser works.[4]

Figure 1. Process Handling by electron JS

 Architecture of Electron JS

Multi-process architecture of chromium because

Electron uses a simplified version of chromium's multi

process architecture. Modern operating systems are

robust because they put an application into different

processes that are separated by each other. [5]A crash

in one application does not have any impact on

another application and it will not affect the integrity

of the operating system. In a similar way, Google

Chrome uses separate process for each tab to protect

overall bugs and glitches from the rendering engine. It

also restricts access from each rendering process to

others and to the rest of the system. So basically the

Chrome browser runs two types of processes. The

main process runs the UI and plugin process and tab

specific processes which renders the web page. The

following figure shows how the multi process

architecture works in Electron. The main process can

start multiple renderer processes with different URLs

loaded into it.

Browser: This is responsible for business logic and data

access. It works on its own process called main process.

It creates the browser window and corresponding

modules to render the web pages.

Renderer - This is responsible for rendering each web

page. Each web page renders on its own thread.

Modules that bridge browser and renderer and control

application life cycle

Figure 2. Internal Architecture of electron js

The Main process providing a web page by creating a

Browser-Window object for compression of module.

Each Browser-Window runs the web page in its own

separate renderer process.

Main Process: The main process is responsible for

responding to applications life cycle events, starting

and quitting the application. it provides the Node-

Webkit execution context inside the renderer process,

which allows you the lower level operating system

interactions from your web pages rendered in the

Electron shell.

Renderer Process: The renderer process is responsible

for loading the web pages to display the graphical user

interface. Each process can load and execute

additional JavaScript files in the same process. Each

renderer process is isolated and each process cares

only about the page running in it.

Process Sharing between renderer and browser:

Browser and renderer are separately running

processes that communicate using special APIs called

chromium inter process communication. IpcMain and

ipcRenderer modules are basically event providing the

handling the communication between main processes

and the renders processes.

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

62

Figure 3. Interposes communication in electron js

D. DESCRIPTION

Process: -

Step 1: Create the basic file of electron

App

package.json

main.js

 index.html

If package.json is according process of npm module so

automatically the generation of system:

 npm init

Package.json file is content the module of system that

is used in program if we want to shift our project so

no need to copy the npm module we just have to

clone that module form GitHub. So [package.json file

contain the dependencies.

package.json

{ "name" : "your-app",

 "version”: "0.1.0",

 "main" : "main.js"

 }

Step 2: [3]Main.js page is controller the main process

of application is file is running into the system and

controlling the process of renderer process. Main

process is able to create multiple renderer process

itself.

const electron = require('electron')

// Module to control application life.

const app = electron.app

// Module to create native browser window.

const BrowserWindow = electron.BrowserWindow

// Keep a global reference of the window object, if you

don't, the window will

// be closed automatically when the JavaScript object

is garbage collected.

let mainWindow

function createWindow () {

 // Create the browser window.

 mainWindow = new BrowserWindow({width: 800,

height: 600})

 // and load the index.html of the app.

mainWindow.loadURL(`file://${__dirname}/index.ht

ml`)

 // Open the DevTools.

 mainWindow.webContents.openDevTools()

 // Emitted when the window is closed.

 mainWindow.on('closed', function () {

 // Dereference the window object, usually you

would store windows

 // in an array if your app supports multi windows,

this is the time

 // when you should delete the corresponding

element.

 mainWindow = null

 })

}

// This method will be called when Electron has

finished

// initialization and is ready to create browser

windows.

// Some APIs can only be used after this event occurs.

app.on('ready', createWindow)

// Quit when all windows are closed.

app.on('window-all-closed', function () {

 // On OS X it is common for applications and their

menu bar

 // to stay active until the user quits explicitly with

Cmd + Q

 if (process.platform !== 'darwin') {

 app.quit()

 }

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

63

})

app.on('activate', function () {

 // On OS X it's common to re-create a window in the

app when the

 // dock icon is clicked and there are no other

windows open.

 if (mainWindow === null) {

 createWindow()

 }

})

// In this file you can include the rest of your app's

specific main process

// code. You can also put them in separate files and

require them here. [6]

Step 3: Index.html

Index.html page is viewer page on that file we are

design the webpage and making the system process to

viewer itself. Html page itself is web technology like

angular, css and JavaScript page application also

collectively information setup.

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Electron Hello World!</title>

 </head>

 <body>

 <h1>Electron Hello World!</h1>

 We are using node

<script>document.write(process.versions.node)</script

>,

 Chromium

<script>document.write(process.versions.chrome)</scr

ipt>,

 and Electron

<script>document.write(process.versions.electron)</sc

ript>.

 </body>

</html>

Step 4: Execution of application in debugging mode is

using command that is development process in which

we can create new window to show the process.

Electron.

IV. CONCLUSION

Although Electron is good new technology and a lot

of improvements and infrastructural tools are still to

come. It is allows building quite good desktop

applications and community is doing great progress on

providing setup and development in the best and easy

and interesting. To build cross platform application

electron help to providing capability to improving

desktop application.

V. REFERENCES

[1] electronjs.org

[2] Building Cross-Platform Desktop Applications

with Electron - Muhammed Jasim.

[3] https://scotch.io/tutorials/

[4] https://medium.com/developers-writing/building-

a-desktop-application-with-electron-

204203eeb658

[5] https://www.christianengvall.se/electron-

packager-tutorial/

[6] http://www.tivix.com/blog/nwjs-and-electronjs-

web-technology-desktop

https://scotch.io/tutorials/
https://medium.com/developers-writing/building-a-desktop-application-with-electron-204203eeb658
https://medium.com/developers-writing/building-a-desktop-application-with-electron-204203eeb658
https://medium.com/developers-writing/building-a-desktop-application-with-electron-204203eeb658
https://www.christianengvall.se/electron-packager-tutorial/
https://www.christianengvall.se/electron-packager-tutorial/

